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Development of an adaptive discontinuity-capturing hyperbolic
finite element model
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SUMMARY

In this paper we present a five-parameter Taylor—Galerkin finite element model to simulate Euler equa-
tions in a domain of two dimensions. The introduced free parameters are theoretically determined by
employing M-matrix theory to obtain a physically correct and non-oscillatory solution in regions con-
taining a sharp solution profile. To improve the computational efficiency and solution accuracy, grids
are adaptively added to obtain solutions with fewer mesh points. The discontinuity-capturing finite ele-
ment model has been validated against test cases, reproducing analytical solutions to the gas dynamic
problems under the current investigation. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We employ in this study the finite element method to simulate the hyperbolic-type gas dy-
namic equations due to its ability to tackle complex geometry problem and to accurately
implement Neumann-type boundary condition. In the literature, several characteristic-type fi-
nite element methods are often referred to, among which are the characteristic finite element
method [1], discontinuous finite element method [2], and the characteristic Galerkin finite el-
ement method [3]. For an extensive survey of these methods, one can refer to Donea [4]. The
Petrov—Galerkin models [5, 6] have also gained widespread acceptance. This class of models
was developed by introducing the upwinding mechanism into the weak statement. We will
restrict ourselves to the Taylor—Galerkin finite element model [7].
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As is well-known that an initially smooth solution to the gas dynamics equations may
evolve to show a discontinuous distribution owing to the presence of non-linear terms in
these equations [8]. To capture the sharply varying thermodynamic and field variables, the
employed numerical methods should have the ability to resolve them within a fairly short
distance. It is, therefore, essential to refine meshes in high-gradient regions and this need
motivates the incorporation of adaptive grids into the present model development. In addition,
the numerical method should give positive-valued and physically relevant oscillation-free Euler
solutions. In this light, a model with the ability to yield monotonic solutions is also needed.
Most of discontinuity-capturing schemes have, unfortunately, been theoretically justified in the
one-dimensional case [9]. We therefore resort to the discontinuity-capturing model that has
nothing to do with spatial dimensionality.

The remainder of this paper is organized as follows. Section 2 presents gas dynamic equa-
tions. In Section 3, we present some essential features of the five-parameter Taylor—Galerkin
finite element model. These free parameters are rigorously determined so as to render a
monotonicity-preserving finite element model. The guideline of ensuring scheme’s monotonic-
ity is the discrete maximum principle [10—13]. This is followed by determination of the
diffusion coefficient introduced in Section 4, and some fundamental studies of the proposed
model in Section 5. For efficiently resolving sharp profiles in the flow, we present the em-
ployed adaptive method [14] in Section 6. In Section 7, we present validation results in one
dimension and then the simulated results for the two-dimensional shock reflection problem
and the supersonic flow over a step. Finally, we draw conclusions in Section 8.

2. WORKING EQUATIONS

The Euler equations governing gas dynamics are expressed in conservation law form as

U +F +G,=0 (1)
where
Iy
ou
U= 2)
pv
E

In Equation (1), F and G are flux vectors along the x and y directions, respectively. These
vectors are functions of the conservative field variable U:

pu

pu’ + p
puv

u(E+ p)
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pv

puv
G= . 4)
pv* + p

v(E + p)

In the above, p, u, v, p and E are the density, x and y direction velocities, pressure and
total energy, respectively. Note that shock and contact discontinuities, which, respectively,
represent non-linear and linear degenerate fields [15], may co-exist in the Euler system of
equations. To close the hyperbolic differential system, the chosen thermodynamic properties
p, p, E are related by the following ideal gas equation of state:

p={—D(E - 3 p(’ +1%)) (5)

In the above, 7 is the specific heat ratio.

3. NUMERICAL FORMULATION

In this paper, the Taylor—Galerkin finite element model will be developed for solving
Equations (1)—(4). For easily describing the method, we will consider the following two-
dimensional linear equation for ¢ in the flow field with a velocity vector (a,b):

bi+ fo+ 9y =0 (6)

where f =a¢ and g=>b¢. We consider that both velocity components a and b in the x and
y directions are constant.

Within the weighted residual framework, we introduce the weighting function W to obtain
the finite element solution from the following integral equation:

/ "W, ){d)#—af—i—(jg}dtd(lel (7)
el 1.JQe Ji, 0

As the name indicates, the Taylor—Galerkin finite element model involves Taylor series expan-
sion of the flux term. Inspired by the work of Donea [7], we expand f and g with respect to
¢t and terminate the expansion up to third-order accuracy. To make the scheme more effective
in controlling errors, four free parameters o, f3, 7, u are introduced into the series expansion
of f and g [16]. The resulting physical fluxes can be expressed as

)
’% {’/( gjaﬁJr bi@i)“[“ <601{+5x8y)
s (g )|
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Note that Equations (8) and (9) are derived at o + f=1 and y + p=1. In what follows,
we specify in this two-dimensional study =0, f=1, =0 and u=1, according to the
modified equation analysis, to obtain a third-order spatial accuracy under the smooth flow
condition [17].
By approximating ¢, = 1/At(¢"*! —¢") and substituting it, together with Equations (8) and
(9), into the weighted residual statement (7), we can derive the consistent-mass finite element
equation given below

(l - tn)

(t =60+ 0((t = 1,)) )

&cag’ =R (10)
or

Mcgn+lzg+¥cgn (11)
where 0@"=®"' — @", R=Cf + Cg + D®". In this study, both the weighting function
W and the basis function for @ are chosen to be bi-linear. For additional details about the
consistent-mass matrix ¥C and the residual vector R, the reader is referred to Reference [17].

When simulating gas dynamic equations, the employed numerical model should have the
ability to resolve shocks and contact discontinuities. No oscillation is permitted to occur near
these discontinuities. To achieve this goal, we advance the calculation from ¢, to ¢, (=t,+At)
in two steps. The first step towards enhancing the discrete system is to diagonalize the finite
clement matrix by lumping M . This lumping-mass approximation, in effect, adds a physically
meaningful stabilization term to the equation. The resulting finite element equation is read as

¥1911+1:B+¥cgn (12)

In the above, M is the lumping-mass matrix. Adding —M ®" to both sides of Equation (12),
we have

M 50" =R +(M_ - M,)@" (13)

Note that the above lumping-mass finite element model is classified as being explicit. The need
for expensively solving d®" from a system of algebraic equations in multiple dimensions is,
thus, avoided. With these nice features, we, nevertheless, do not regard this explicit model as
being computationally excellent since the solution may be excessively smeared by the lumping-
mass approximation error. As a simple way to improve prediction accuracy, we introduce the
fifth parameter ¢4 and multiply the last term of Equation (13) with it.

The resulting equation reads as

M 5@ =R + cq(M_ — M )" (14)
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Note that the above discrete expression is identical to that proposed by Lohner et al. [18].
We, therefore, consider cq as a diffusion coefficient.

4. MONOTONIC TAYLOR-GALERKIN FINITE ELEMENT MODEL

To provide a theoretical expression for ¢4, we need to rewrite Equation (14) as

M @' =Q(®") + M @" (15)
where

Q=R +c(M_—M)0" (16)
Multiplying Equation (15) by ¥1—1’ we have

Ut =J(@") (17)

where

J@)=0"+ M 'Q(®") (18)

The vector function J given above accommodates the Gateaux-derivative property in the
interval [®,®*] [13]. Note that the Jacobian matrix J'(=0J/0®) is Riemann integrable and
is, thus, derived as B

J=I1+M'Q (19)

or

J=M'(Q +M) (20)

After some algebra, the discrete equation at (/,J) is derived as
591,_1 = C]*l,J+1@]—1’J+1 + CI,J+1@1,_1+1 + C1+1,J+191+1,_1+1
+Cl—1,JQ1_1,J + CI,JQ[,J + CH—I,JQ].HJ

+CI—1,J—19171,J—1 + CI,J—IQI,J—I + CI+1,J—1Q[+1,J—1 @)
where 0@, :Q",jl - @), and

C =c L iochriocv i“szrivv iw2
ISLIH =\ 36 T g M T g M T 3 T T T T 36 7Y

1 1 1, 1 1,
(e g g

~g i+ g od) (22a)
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(22¢)

(22d)

(22¢)

(22f)

(22g)

(22h)
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C =c i+iocv LI i*vz—i—ivv LIpW:
LT 36 T o M T 24 T 3 M T I T T 36 7Y

1 1 L ,o 1 L g
—|—<12Vx+12vy+12ﬁvx4ﬁvxvy+12ﬁvy

1 1 .
+8 Wi, — 13 uvxvyz) (221)

In the above, v,(=aAt/Ax) and v,(=bAt/Ay) are known as the Courant numbers.

The explicit scheme given in (17) is, by definition, monotonic. This implies that if
@ — ®* >0, then J(®) — J(P*)=0. Given the Gateaux-derivative function J and the Rie-
mann integral function J’, the mean-value theorem is applied to derive

0
J(@) —J(Q*)Z(Q—Q*)Zl[!@ﬂLt@—@))] dr (23)

Assume that @ —®" >0 and J '(®)>0 for ® belonging to the open interval of ® and @*; then,
J(®) — J(P")>0. As a result, the developed explicit Taylor—Galerkin model is monotonic
in time provided that g’(g) is monotonic. This enables us to determine ¢4 by demanding

that £+¥_1 Q/ be monotonic. More precisely, the developed explicit model is monotonic in
time if I +¥;lg’ is a monotone matrix. A possible way to make l—i—M;lg' monotonic is
to require that gl be an M-matrix, and that the Jacobian of Q given in Equation (16) be
non-negative.

By virtue of the above M -matrix theory, the task of expressing ¢4 in terms of v, and v, is
now transformed into that of finding ¢4 from the following inequalities:

¢4+ 3w —3v, + 3va — vy + 3vy2 — 6vay + 6vxvy2 >0 (24a)
2¢q — 6v, — 3V + 6vy2 +6v2v, >0 (24b)

Ca — 3v — 39y 4 397 + 9wy, + 39 — 62w, — 6 =0 (24¢)
2¢q + 6v, + 6\@% — 3v§ — 6\1,va2 >0 (24d)

Sca+6(v;+v) =0 (24e)

2cq — 6V, + 6VF — 3V} + 61,37 > 0 (241)

Ca+3v +3v, + 302 + 9, + .’avy2 + 6viv, + 6vxvy2 >0 (24g)
2¢q + 6V, — 3V + 61 — 62y, = 0 (24h)

ca — 3% 4 30 4+ 397 — 9wy + 317 + 62w, — 6v; =0 (241)
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Figure 1. The range of cq4, plotted against the Courant numbers v, and v,, for the chosen free
parameters at «=0, f=1, y=0 and pu=1.

Note that the above equations are obtained at =0, f=1, y=0 and pu=1. In addition,
cd(vy,v,) is chosen to lie slightly above the surface plotted in Figure 1 so as to render
satisfaction of Equation (24). Under the circumstances, the monotonicity-preserving feature
is retained. It is stressed that the above theoretically derived two-dimensional finite element
model involves no complex spatial operator splitting.

5. FUNDAMENTAL STUDY OF THE FINITE ELEMENT MODEL
We now conduct modified equation analysis [19] to reveal how dissipation and dispersion
errors can be reduced with the increasingly smaller grid sizes Ax and Ay. By performing

Taylor series expansion on terms given in Equation (21), we can derive the modified equation
as follows for the discretization equation obtained at =0, f=1, y=0 and u=1:

bi+ ape + by

1 Ax? 1 Ay?
=6 A Pt g ar

1 5 AX? 1 AN
g (Gl cat Vo = oo+ g (ST ca+ V0 - by
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Ax? Ay AxAy

1 1
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— 72(—cd +cj — 6cgv. +9v —9v)) A Prooex

1
7772(70(14_63765(1\1 —|—9v *9" ) ¢yyyy

1 Ax A 1 AxAy3
+ 8(_1 +cq+ sz)vxvy y ¢xxxy 8 (—14cq+ Vyz)VxVyTty (z)xyyy
1 A
+ = (cq —cj +3cd(vx2+vy2) 3(v2 —|—v2)+3v2v2) ax y Dy + - (25)

36

The derived modified equation for (6) confirms the consistency-preserving property and reveals
the temporal and spatial error distributions.

We then conduct phase response analysis to compute the ratio of the semi-discrete phase
velocity C1g to the exact phase velocity Cexaet:

Crg

re =
C exact

For the two-dimensional equation (6), the exact phase velocity (or frequency), namely, Cexact
=—At((a,b) - (qx,qy)), is easily derived as

(26)

Dot = q;oei(qx(xfut)+qy(y*bt)) (27)

where ¢, and ¢, denote the wave numbers along the x and y directions, respectively. In the
case of Ax=Ay=h, we can normalize the dimensional wave number vector ¢ by

E=(&m=(hgx,hqy) (28)
We rewrite the velocity vector in terms of the flow direction 0 = tan~'(b/a), where
(a,b)=(a® + b*)"?*(cos 0,sin ) (29)

According to the von Neumann stability analysis (or Fourier analysis) [20], the amplification
factor G and phase velocity Crg for the discrete equation (21) are derived as

G =V, + iV, = function (|&|,0) (30)

Cro — tan~! (;2) (31)

where

Vi=1-3cq+ §ca(cos(&) +cos(n) — 5 (0 +v))

+ 3 97(2cos(&) — cos(i)) + 5 /(2 cos(i) — cos(£))
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Taylor-Galerkin v=0.2 Taylor-Galerkin v=0.3

Lax-Wendroff v=0.2 Lax-Wendroff v=0.3

Mh=1000 AMh=1000

AMh

Figure 2. The relative phase error rp, defined in (26), for the proposed Taylor—Galerkin
method and Lax—Wendroff method.
+ 15 Ca(cos(& + 1) + cos(& — 1)) + ¢ v (cos(& + 1) + cos(E — 1))
+ 5 w(cos(E + 1) — cos(& — 1)) + ¢ v (cos(E + i) + cos(& — 1)) (32)
Vy=—3 (v sin(&) + v sin(n)) + 3 vin( sin(&) 4 v sin(y))

— & Vx(sin(& + 1) + sin(& — 1)) — ¢ W (sin(& + 1) — sin(¢ — 1))

— 3 vin(sin(€ + 1) — sin(& — 1)) — 3 voy(sin( + 1) + sin(¢ — 1)) (33)
The above phase response analysis clearly shows that the value of rg, defined in Equation (26),
depends on the wavelength 4 (=2nA/|£|) and the angle 6. Noticeably seen from Figure 2,
which plots rg at different wavelengths, is the significantly improved isotropy even at a small

wavelength.
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Figure 3. The illustration of hanging nodes.

6. h-ADAPTIVE MONOTONIC FINITE ELEMENT MODEL

A sharp capture of thermodynamic variables in gas dynamic system calls for a high-resolution
discontinuity-capturing model. To make the developed monotone finite element model com-
putationally more efficient and useful in practice, we will further refine the Taylor—Galerkin
model given previously in Sections 3 and 4 by incorporating the grid-adaptive ability into the
formulation. In this paper, the 4-adaptive method is chosen to refine solutions in high-gradient
regions, thus improving the overall prediction quality at reasonable cost. Success in grid re-
finement depends on, among other factors, complications in the data structure, bookkeeping
of remeshed nodes, and the treatment of constrained nodes [21].

Within the finite element framework, solutions at the irregular nodes (or hanging nodes) are
not directly obtained from the finite element matrix equation. Rather, they are algebraically
averaged from the neighbouring solutions obtained at regular nodes (or nodes shared by all
neighbouring elements), which lie on the constraining side. For example, ¢; at the hanging
node 3 in Figure 3 is constrained by ¢3=1 (¢ + ¢>). In the presence of irregular nodes,
the global mass matrix is modified to improve the overall efficiency [14]. The rule adopted
to make modification on the global mass matrix has been detailed in Reference [22].

7. NUMERICAL RESULTS

The proposed Taylor—Galerkin finite element model will be validated against several bench-
mark tests. We considered firstly the Sod’s problem [23], subject to the initial data

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:957-973
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Figure 4. The simulated shock-tube solutions at #=0.24. (a) Density; (b) pressure;
(c) velocity; (d) internal energy.

given by

(1,0,1), 0<x<0.5

(p,u, p)= (34)
(0.125,0,0.1), 0.5<x<!

For this analytic problem, the finite element solution was sought at v, =0.85 and v, =0. The
value of ¢y is theoretically specified according to Equations (24). Figure 4 compares the
simulated solution (symbol) with the exact solution (full line) [23]. The developed Taylor—
Galerkin model is seen to be able to resolve shock discontinuities within few grid points.
The contact discontinuities are, unfortunately, smeared with more mesh points. There are no
overshoots or undershoots.
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Figure 5. The simulated density is plotted against x for the blasting wave problem.
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Figure 6. Schematic of the shock reflection problem.

The blasting wave problem [24], subject to the following initial data, is then investigated:
(1,0,1000), 0<x<0.1
(p,u, p)= 1< (1,0,0.1), 0.1<x<09 (35)
(1,0,100), 09<x<1.0

This problem was solved at v=0.85 in a uniformly discretized domain. Since this problem
is not amenable to an exact solution, the TVB solution given in Reference [25] is considered
as the referenced solution. The results (symbols) plotted in Figure 5 show that the proposed
finite element model can reproduce the known wave propagation feature.

Having validated the ability of the proposed model to capture shock and contact discontinu-
ities in a domain of single dimension, we proceed to solve for the two-dimensional benchmark
tests at «=0, f=1, y=0 and u=1. As before, the value of ¢4 was prescribed according to
Equation (24). The first two-dimensional validation test considers the shock reflection from a
flat plate [26]. In Figure 6, an oblique shock wave having a Mach number of 2.9 is seen to
reflect from the channel floor at an angle of 29° to the incident flow. The physical domain
was uniformly discretized from the beginning of the simulation. It is seen from Figure 7 that
grids are adaptively concentrated along the track of shock impingement and its reflection.
The simulated results (symbols) in Figure 8 agree well with the exact solutions (full line)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:957-973
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Figure 7. The adaptive meshes generated in the simulation of shock reflection problem.

3
25} y
a 2¢F 5
> J
% 15 §
a | 4
Exact [25]
0.5¢ ° Computed
0 1 1 1
0 1 2 3 4
X

Figure 8. A comparison of the simulated and exact solutions for density along the line y =0.5.

[26]. Through this test, the proposed two-dimensional hyperbolic model is confirmed to be
able to provide ripple-free positive-valued solutions without requiring excessive mesh points
to resolve shocks. The model may, therefore, be computationally less expensive to obtain the
two-dimensional gas dynamic solutions.

We then consider the wind tunnel problem of Woodward and Colella [24]. This problem
has been investigated by many authors to study the time-evolving contact discontinuities and
regular shocks. As the Mach reflection is seen to emanate from the channel wall, a slip line
is, thus, expected to occur at the junction of the Mach shock and the reflected shock. The
tunnel in Figure 9 has a length 3, a width 1 and a step, which is 0.2 in height and is lo-
cated downstream of the channel inlet with a length of 0.6. The entry flow is uniform in
velocity with the Mach number of 3. At the channel exit, all field variables are assumed to
be gradient-free and, thus, have no effect on the flow development. At the channel roof, we
specify the reflecting boundary condition: du/0x =0, v=0. Along the channel floor and step,
we simply apply the slip condition. No flow is allowed to penetrate the channel wall. At the
step corner, the rarefraction fan is seen to occur and this corner is, in fact, a sonic point. Like
many other studies, no specific treatment is needed at this geometrically and physically sin-
gular corner. The implication of this simplification is that the discretization error may cause

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:957-973
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Figure 9. Schematic of the flow in a channel having a step.

1.0 LeveDENS
[ 21 70

[ 20 67

[ 19 6.4
0.8 | 18 61
N 17 58

[ 16 55

F 15 52
0.6 | 14 49
[ 13 46

> L 12 43
- 140
04 10 37
[ 9 34

E 8 ad

F 7 28
02 | 6 25
+ ~ 5 22

N = 4 19
0.0 L L L 1 L L L L 1 L L L L 1 g }ig
0 1 2 3 '

Figure 10. The simulated density contours.

an artificial boundary layer to develop along the planar step and, in turn, contaminate the
prediction.

Numerical solutions obtained at Ax=Ay=1/60 are shown in Figure 10. Due to space
limitation, only the density contours are plotted at r=23.0. Ahead of the step, the simulated
shock bends towards the primary flow direction and interacts with the expansion waves stem-
ming from the step corner. The oblique shock impinges on the channel roof, resulting in
a Mach shock wave that is locally orthogonal to the channel roof. Such a reflection differs
from the regular reflection and is, thus, called Mach reflection. It is remarkable to see from
Figure 10 the slip line, which originates from the junction of the incident shock, Mach
shock, and reflected shock waves. This slip line is physically identical to the contact dis-
continuity. As a consequence, the flow properties are not expected to be continuous across
the slip line. Figure 10 also shows the reflected oblique shock from the channel roof, fol-
lowed by a reflection from the channel floor. The Mach stem on the step has a length longer
than that on the channel wall. This finding is similar to that found previously by Chang
et al. [27].
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8. CONCLUDING REMARKS

In this paper we develop a Taylor—Galerkin finite element model to simulate Euler equations
for gas dynamics. To improve the computational efficiency, the finite element equation has
been developed within the explicit context. To minimize the artificial diffusion error, the
diffusion coefficient has been rigorously determined to exhibit the monotonicity-preserving
and strictly positive-valued density properties based on the M-matrix theory. To improve the
prediction accuracy, the h-adaptive capability is introduced into the formulation so that sharp
profiles can be obtained in a domain discretized by a much reduced number of grid points.
Several cases have been studied to demonstrate the stability, accuracy, and efficiency of the
developed finite element model. These problems involve shocks and contact discontinuities
and are, thus, appropriate for justifying the usefulness of the proposed model for simulating
gas dynamic equations. All the simulated results have been shown to be in good agreement
with the reliable comparison data.
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